skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Chengqian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Micro-CT, also known as X-ray micro-computed tomography, has emerged as the primary instrument for pore-scale properties study in geological materials. Several studies have used deep learning to achieve super-resolution reconstruction in order to balance the trade-off between resolution of CT images and field of view. Nevertheless, most existing methods only work with single-scale CT scans, ignoring the possibility of using multi-scale image features for image reconstruction. In this study, we proposed a super-resolution approach via multi-scale fusion using residual U-Net for rock micro-CT image reconstruction (MS-ResUnet). The residual U-Net provides an encoder-decoder structure. In each encoder layer, several residual sequential blocks and improved residual blocks are used. The decoder is composed of convolutional ReLU residual blocks and residual chained pooling blocks. During the encoding-decoding method, information transfers between neighboring multi-resolution images are fused, resulting in richer rock characteristic information. Qualitative and quantitative comparisons of sandstone, carbonate, and coal CT images demonstrate that our proposed algorithm surpasses existing approaches. Our model accurately reconstructed the intricate details of pores in carbonate and sandstone, as well as clearly visible coal cracks. 
    more » « less